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PreProPath Algorithm: An Uncertainty-Aware
Algorithm for Identifying Predictable Profitable

Pathways in Biochemical Networks
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Abstract—Pathway analysis is a powerful approach to enable rational design or redesign of biochemical networks for optimizing
metabolic engineering and synthetic biology objectives such as production of desired chemicals or biomolecules from specific
nutrients. While experimental methods can be quite successful, computational approaches can enhance discovery and guide
experimentation by efficiently exploring very large design spaces. We present a computational algorithm, PreProPath (Predictably
Profitable Path), to identify target pathways best suited for engineering modifications. The algorithm utilizes uncertainties about
the metabolic networks operating state inherent in the underdetermined linear equations representing the stoichiometric model.
Flux Variability Analysis is used to determine the operational flux range. PreProPath identifies a path that is predictable in
behavior, exhibiting small flux ranges, and profitable, containing the least restrictive flux-limiting reaction in the network. The
algorithm is computationally efficient because it does not require enumeration of pathways. The results of case studies show
that PreProPath can efficiently analyze variances in metabolic states and model uncertainties to suggest pathway engineering
strategies that have been previously supported by experimental data.

Index Terms—Flux Balance Analysis, Flux Variability Analysis, Metabolic Networks, Uncertainty
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1 INTRODUCTION

ENGINEERED cells have been used to produce
various commercially significant bio-molecules,

including biofuels [1], amino acids [2], and therapeu-
tic proteins [3]. Current cell engineering approaches
broadly fall into one of three categories. The first
approach is to embed non-native reactions into a host
organism to enable a synthesis route. For example,
production of butanol [4], [5] and isopropanol [6],
two potential biofuels, was enabled in Escherichia coli
(E. coli) by importing different genes from Clostridium
acetobutylicum. The second approach is to eliminate
pathways that compete for cellular resources [1] or
otherwise inhibit product synthesis. In a recent exam-
ple, Yomano and co-workers deactivated the methyl
glyoxal pathway to reduce catabolite repression and
thereby accelerate co-metabolism of hexose and pen-
tose sugars into ethanol [7]. The third approach is to
tune the activities of existing pathways, for example
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by altering enzyme concentrations through gene ex-
pression changes. It should be noted that the above
categorization is far from strict. Indeed, combinations
of the various approaches are increasingly used to
simultaneously enable new synthesis routes and opti-
mize the yield. Keasling and co-workers have recently
reported on engineered strains of E. coli capable of
producing a variety of fatty esters (biodiesel), fatty
alcohols, and waxes directly from simple sugars [8].
Fatty acid overproduction was achieved by over-
expressing native thioesterases and acyl-CoA ligases
while eliminating β-oxidation. To produce branched
chain alcohols which are non-native to E. coli, a
biosynthetic operon for branched chain amino acids
(thrABC) was over-expressed, genes encoding com-
peting pathways were deleted, and additional genes
encoding the missing synthesis steps were imported
from Salmonella typhimurium and Corynebacterium glu-
tamicum [9].

A common thread in these approaches is that
the engineered interventions targeted pathways, as
opposed to individual reactions, as the functional
units of cellular biosynthesis. While experimental ap-
proaches have often achieved significant success, the
efficiency whereby the intervention targets may be
identified and the optimality of results remain open
questions due to the complexity of biological systems.
In this regard, computational methods can serve as
useful guides to efficiently explore the pathway de-
sign space.

Computational pathway analysis has shown great
promise in rationally designing cells for efficient
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production of compounds [10] and maximization of
stoichiometric yield [11], [12]. One commonly used
analysis tool (e.g. [1], [11], [12], [13]) is elementary flux
mode (EFM) analysis, which involves the enumera-
tion of stoichiometrically balanced pathways feasible
at steady state [14]. Any steady state flux distribu-
tion of a metabolic network can be expressed as a
linear combination of the EFMs [13]. Unfortunately,
EFM analysis is computationally intractable for large
networks [15]. A recent analysis calculated 26 million
EFMs for an relatively small E. coli network consisting
of 106 reactions [16]. Importantly, from a cell engineer-
ing perspective, not all EFMs are of interest, as only
a subset of EFMs may be engaged in the synthesis of
the desired product molecule.

As an alternative to enumeration-based approaches,
we investigate a graph-based approach to identify
pathways as targets for metabolic engineering. Graph-
based algorithms that search for specific attributes
such as shortest path and bottleneck path [17] are
computationally efficient with runtimes that are poly-
nomial in the size of the graph. The algorithm pre-
sented here, which we call Predictably Profitable Path
(PreProPath), searches for pathways that should be up-
regulated to most predictably improve the yield of a
biosynthetic product. Large-scale stoichiometric mod-
els of cellular metabolism nearly always have large
degrees of freedom. Since the models are underdeter-
mined, it is not possible to specify an operating point,
i.e. unique flux distribution; rather, the model circum-
scribes an operating cone, i.e. flux ranges bounded
by physicochemical, regulatory, and measurement-
derived constraints. The flux ranges provide a quan-
titative basis to evaluate the profitability of an en-
gineering intervention, as some interventions will
only produce marginal improvements in flux that
are subsumed by the uncertainty in the model. The
PreProPath algorithm identifies a path from a starting
substrate to a desired product that most likely con-
tains one or more flux-limiting reactions, where the
likelihood is determined by considering the degrees
of freedom in the network. The PreProPath algorithm
extends our earlier work [18] in using graph-based
algorithms for pathway analysis while avoiding path-
way enumeration. We evaluate the algorithm through
two case studies and comparisons with other pathway
engineering strategies and examples discussed in the
literature.

2 BACKGROUND AND DEFINITIONS

2.1 Graph Representation
A metabolic network is represented by an m × n
matrix S, where each column corresponds to a re-
action and each row corresponds to a metabolite.
S can be expressed as a directed graph, G, with
vertices, V, and edges, E, representing metabolites
and reactions respectively. An edge in E may be

a hyperedge, connecting two sets of vertices, as a
reaction may have multiple reactants and/or prod-
ucts. A path is an alternating sequence of vertices
and edges, v0, e0, v1, e1, v2, . . . , en−1, vn, beginning and
ending with vertices. A path between a source and a
destination vertex may contain hyperedges such that
some vertices associated with the hyperedges may not
be part of such path.

Fig. 1(a) illustrates a small hypothetical network.
Fig. 1(b) shows the corresponding stoichiometric ma-
trix. Metabolites aext, bext, eext, and gext are not in-
cluded in the S matrix as they are external to the
network; however, exchange reactions R1, R3, and R6

are included in the matrix.

aext

bext

c d eext
R1 R2 R3

R5

f

R4

gext
R6

R1 R2 R3 R4 R5 R6

c 1 -1 0 -1 0 0

d 0 1 -1 0 1 0

f 0 0 0 1 -1 -1

(a)

(b)

Fig. 1. An example. (a) Network graph. (b) Corre-
sponding S matrix.

2.2 Flux Variability Analysis
Given a metabolic network, we associate a flux (net-
work flow), vi, with each reaction i. It is possible to
identify the maximum (or minimum) flux within a
network by repeatedly applying Flux Balance Anal-
ysis (FBA) [19]. This procedure, known as Flux vari-
ability analysis (FVA) [20], identifies flux ranges by
maximizing and minimizing each network flux sub-
ject to stoichiometric, physicochemical (e.g. thermo-
dynamic irreversibility), and measurement constraints
[21], [22]. Mathematically, FVA can be expressed as:

Maximize (or Minimize) vi

subject to :

S · v = 0

vlbi ≤ vi ≤ vubi

where the equation S · v = 0 balances the fluxes
into and out of a metabolite pool, and constrains the
network to operate at quasi-steady state. For exchange
reactions, flux bounds, vlbi and vubi , represent the maxi-
mum and minimum nutrient uptake or secretion rates.
Flux bounds for the rest of the reactions correspond
to network constraints relevant to particular operating
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conditions such as reaction directions. The maximum
(minimum) flux value identified by FVA for a reaction
i is denoted by vmax

i (vmin
i ).

Applying FVA to the S matrix in Fig. 1(c) with the
following bounds, v1 = 10 and v6 ≥ 2, the resulting
flux ranges, (vmin , vmax), for reactions R1 through R6

are: (10, 10), (0, 8), (0, 8), (0, 8), (2, 10), (2, 10).

2.3 Edge Weighting During Graph-Based Analy-
sis

Flux values can be utilized as edge weightings, we,
during graph-based analysis. It is possible to identify
a path between a source, s, and a destination, d,
utilizing one of the following edge weightings:
• To identify a path capable of carrying maximal

flux, edge weights are assigned maximum flux
values (vmax

i ). This approach is optimistic as it
assumes that the path is capable of operating
under the most favorable conditions, which may
not be attainable in practice.

• To guarantee a minimal flux flowing through
a path, edge weights are assigned minimum
flux values (vmin

i ). This approach is conservative
in identifying flux capabilities. Operationally, an
edge along the path may carry a flux higher than
the minimal flux vmin

i .
• To identify the path with the least flux variability

(i.e. operationally providing the most predictable
fluxes under specified operating conditions), each
edge weight is assigned the flux range, the dif-
ference between the maximum and minimum
reaction fluxes obtained using FVA. An edge with
a low weight here indicates a more predictable
operating condition when compared to an edge
with a higher weight. Identifying a path from s to
d utilizing these edge weights results in the most
predictable path as it operates in the tightest flux
ranges.

2.4 Definitions

When analyzing a graph, a particular weight of inter-
est is the bottleneckWeighti, which limits the maximum
amount of flux flowing from s to d along any single
path, pi. Within a graph, and among all paths pi
between s and d, the maximum value among all
bottleneckWeighti is referred to as the bottleneckWeight
[23]. The edge associated with bottleneckWeight is a
bottleneck edge. More formally,

bottleneckWeight = max∀pimine∈piwe

Any path between s and d capable of carrying a
flux equal to or greater than the bottleneckWeight is
referred to as a profitable path, as it contains the least
restrictive flux-limiting reaction in the network and
can be an engineering target that can yield profitable
increase in yield.

When utilizing flux ranges as weights, one edge e1
is less variable than an edge e2 if w(e1) is less than
w(e2). A path p1 is less variable than a path p2, if
the maximum edge weight along p1 is smaller than
the maximum edge weight along p2. If the maximum
edge weights for p1 and p2 are equal, then succes-
sively smaller maximum weights along each path are
compared instead. A path that is least variable is also
the most predictable.

2.5 Predictable Profitable Path Conditions
For a given graph, G, a source vertex, s, destination
vertex, d, and a flux range associated with each edge
(vmin

i and vmax
i ), the PreProPath algorithm finds the

least variable path that contains the reactions capable
of carrying the maximum flux from s to d. More
specifically, PreProPath identifies a path p as a pre-
dictably profitable path if it meets the following two
conditions:

Condition 1. Path p is profitable: all reactions along
p are guaranteed to have a flux carrying capacity equal
to or greater than the bottleneckWeight.

Condition 2. Path p is predictable: p is the least
variable path among all profitable paths pj .

In our work, we aim to first identify profitable
paths within the network using Condition 1, and
then to identify the most predictable path among all
profitable ones using Condition 2.

To demonstrate these conditions, consider paths
P1 − P4 from s to d in a hypothetical network graph.
Each path consists of three edges, with vmax

i edge
weights representing the maximum possible fluxes
obtained using FVA:

P1 = (30, 50, 100)

P2 = (30, 70, 120)

P3 = (30, 100, 110)

P4 = (20, 80, 130)

Paths P1 − P3 have the same largest (among all
paths) smallest (within path) weight of 30, which is
the bottleneckWeight. P1, P2, and P3 are equivalent in
terms of flux capacity limits as the largest flux through
each of these paths will be at most 30. Paths P1, P2,
and P3 therefore satisfy Condition 1; however, P4 does
not.

To demonstrate Condition 2, assume that the fol-
lowing weights are assigned to P1, P2, and P3 based
on flux ranges (vmax

i - vmin
i ) found using FVA:

P1 = (2, 3, 8)

P2 = (3, 6, 8)

P3 = (1, 7, 11)

Examining the largest range within each of the three
pathways, both P1 and P2 have the smallest (among
paths) maximum (within path) range of 8. Between P1

and P2, P1 is less variable than P2, as P1 has the next
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(e) Edge bc is identified as the predictable edge and 
edge ae is discarded
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(f) Edge cd is identified as predictable edge and 
edges ef and fd are discarded
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(g) Identified predictable path

s

Fig. 2. Example network to illustrate the two searches of the PreProPath Algorithm. The green arrows indicate
edges that are added to PreditableProftiableGraph. The dotted red arrows indicate edges that are removed from
PredictableGraph.

smallest maximum range (value 3), thus satisfying
Condition 2. Among all four paths, P1 is profitable
(capable of carrying flux above the bottleneckWeight)
and the most predictable because it exhibits the least
variability when compared to other profitable paths.

When analyzing a network graph without ex-
plicit path enumeration, identifying the least variable
path, one with the smallest (among paths) maximum
(within path) weight, is not straightforward. A naı̈ve
approach is to successively select the lowest edge
weight until a path is found from source to destina-
tion. Consider for example network in Fig. 2(b), with
source s and destination d. Such a naı̈ve approach will
result in considering the edges in the following weight
order: 3, 4, 5, 6, 7, 8, and then 10. At that point, there
is a path from s to d, but it encompasses multiple
paths, and in this case, the entire network is selected.
Our algorithm, PreProPath, selects the edges of the
profitable path successively, first selecting the edge
with the largest-weight edge necessary to complete
the path from s to d, and then selecting the edge with
the next largest weight, and so on.

3 PreProPath ALGORITHM

3.1 Algorithm
The PreProPath algorithm identifies a predictably prof-
itable path from source to destination by executing
two consecutive searches on the network graph. The
first search identifies a profitable graph, a subset of
the original graph G in which every reaction can
operate at or above the flux limit, bottleneckWeight. The
profitable graph can be found by removing from G all
edges having weight less than bottleneckWeight. Every

path from s to d in the profitable graph thus meets
Condition 1.

In the second search, the objective is to identify
the least variable path in the profitable graph. Edge
weights in the profitable graph are set to flux ranges
as calculated using FVA. Edges are selected succes-
sively (through multiple passes) to build the pre-
dictably profitable path. During each pass and in
order of increasing edge weights, edges in profitable
graph are selected for building a path from s to d.
The passes stop when a path from s to d can be es-
tablished using the selected edges. A post-processing
step allows the identification of the path that meets
both Condition 1 and Condition 2.

The pseudo code for the PreProPath algorithm is
presented in Fig. 3. On line 1, a weighted graph G
is created from the S matrix. The edge weights are
set to either vmax or vmin depending on the metabolic
engineering application and the appropriateness of
utilizing an optimistic or conservative approach. On
line 2, the bottleneckWeight is found in G using the
single source-single destination bottleneck algorithm
(e.g. [23]).

The first search spans lines 3 through 7. Start-
ing with an empty graph profitableGraph, edges with
weight equal to or greater than bottleneckWeight are
added to profitableGraph. Each edge in profitableGraph
is then assigned the flux range as a weight in prepa-
ration for the second search.

The second search spans lines 8 through 13.
An empty graph predictableProfitableGraph is cre-
ated. The maximum connecting edge, predictable,
in profitableGraph is iteratively selected and re-
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PreProPath Algorithm(S, s, d, vmin, vmax)
1. Create a graph G from S using either vmax or vmin as edge weights
2. Identify bottleneckWeight for paths from s to d
3. Create an empty graph profitableGraph
4. for each edge e in G
5. if(weight(e) ≥ bottleneckWeight)
6. add edge e to profitableGraph
7. for each edge e, set edge weights in profitableGraph to be (vmax[e] − vmin[e])
8. Create an empty graph predictableProfitableGraph
9. while there does not exist a path from s to d in predictableProfitableGraph

10. predictable = maximum connecting edge in profitableGraph from s to d
11. remove predictable and all edges with weight greater than weight of predictable from profitableGraph
12. add predictable to predictableProfitableGraph
13. return path from s to d in predictableProfitableGraph

Fig. 3. Pseudo code for PreProPath Algorithm.

moved from profitableGraph. This maximum con-
necting edge is found by first sorting all edge
weights in profitableGraph, and then successively
adding edges in increasing weight to an initially
empty graph until a path from s to d is found. The
last added edge is the maximum connecting edge.
All edges with weights greater than the weight of
the maximum connecting edge are removed from
profitableGraph. The predictable edge is then added to
predictableProfitableGraph. The process is repeated until
a path from s to d is found in predictableProfitableGraph.
The iterative process successively builds the pre-
dictable profitable path in predictableProfitableGraph,
one edge at a time in order of decreasing variability.
The returned path on line 13 is the predictableProf-
itablePath from s to d.

An example illustrating the two searches of the
PreProPath algorithm is shown in Fig. 2. The original
network, with each edge weight representing the flux
bounds, is shown in Fig. 2(a). The first search identi-
fies a profitable network. In this example, we utilize
vmax as our edge weights for the first search.

By inspection, it can be seen that there are three
parallel paths from source node s to target node d with
the following node sequences: (i) s, a, b, c, d; (ii) s, a,
e, f , d; and (iii) s, g, h, d. The bottleneck edge for (i) is
sa with weight 16. This edge is also the bottleneck for
path (ii). For path (iii), sg is the bottleneck edge. For
the entire network, the bottleneck edge is sa, because
this edge has a greater weight than sg. Edge sa is
identified on line 2 in the algorithm as the bottleneck
edge.

Per lines 4-6 of the algorithm, edges with weight
greater than the weight of sa will be added to
profitableGraph. Edges gh and hd do not appear in
profitableGraph, as they have weights less than sa.
The profitableGraph is shown in Fig. 2(b). Per line 7
of the algorithm, the edge weights in profitableGraph
are modified to reflect flux ranges, shown in Fig. 2(c).

Fig. 2(d-g) illustrates the execution of the second
search (lines 8-13 in the algorithm) on the graph in

Fig. 2(c). First, the edge with weight 10, colored green
in Fig. 2(d), is identified as the maximum connecting
edge. To identify this edge, the algorithm examines
the edges in order of ascending weights. Edges ab
(weight 3), cd (4), . . . ae (8), and sa (10) are considered
in order. Once sa is considered, there exists a path
from s to d, and sa is selected as a potential edge for
the predictable profitable path.

Edge sa is removed from profitableGraph and
added to the predictableProfitableGraph. Next, the edge
with weight 7, colored green in Fig. 2(e), is iden-
tified as the maximum connecting edge. This edge
is removed from profitableGraph and added to the
predictableProfitableGraph. Additionally, edge ae, indi-
cated as a dotted red line in Fig. 2(e), is removed
from profitableGraph. This edge is removed because the
algorithm cannot possibly identify ae as a maximum
connecting edge in future iterations of the while loop.
The profitableGraph is shown in Fig. 2(f) and Fig. 2(g)
after two additional iterations through the while loop.
After the second search terminates, there is only one
path (colored green) from s to d. This is the predictable
profitable path.

3.2 Correctness Proof

Theorem 1: Given a stoichiometric matrix, mini-
mum and maximum flux ranges, and a starting vertex
s and an ending vertex d, PreProPath returns a path
from s to d. Further, PreProPath returns a predictable
profitable path.

Proof: First, we argue that there exists a path in
profitableGraph by contradiction. At the end of the
first search, PreProPath identifies a subgraph of G,
profitableGraph, in which every edge has a weight
greater than or equal to the weight of the bottleneck
edge. Assume that no path exists from s to d. This
implies that there is an edge e′ on the path from s
to d with a weight less than the weight of the bottle-
neck edge, and that this edge was not added to the
profitableGraph. By definition of the bottleneckWeight,
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e′ should have been identified as the bottleneck edge,
and we have a contradiction. Thus, there exists a path
from s to d in profitableGraph.

We next argue that PreProPath identifies a path
in predictableProfitableGraph from s to d. This can be
shown by construction. Every edge in profitableGraph
is potentially an edge in predictableProfitableGraph.
During each step of the second search, a new edge
is added to predictableProfitableGraph. The steps re-
peat until a path from s to d is identified in
predictableProfitableGraph. Because profitableGraph has a
path from s to d, the second search is guaranteed to
identify a path from s to d.

Further, we argue that the path identified by the sec-
ond search is a predictable profitable path. By Condi-
tion 1, profitableGraph has edges with weights greater
than the bottleneckWeight. Every path in profitableGraph
is therefore a profitable path. By construction, every
edge in the profitableGraph is a potential edge in the
predictableProfitableGraph. Thus any path identified in
the second search must be profitable.

By contradiction, we next argue that the second
search returns a predictable path. Assume that the
path p returned from the second search is not pre-
dictable. That is, there exists another path p’ in
profitableGraph that is less variable than p. By defini-
tion, p’ has an edge e’ with a maximum edge weight
that is less than the weight of the maximum-weight
edge e along p. If both p’ and p have equal maximum
edge weights, then p’ has at least one edge e’ with less
weight than the weight of an edge e in p. This implies
that the second search added an edge e’ that com-
pletes a path from s to d to predictableProfitableGraph
with smaller weight than edge e. This contradicts how
the second search is executed. Thus, PreProPath is
guaranteed to return a path that is predictable and
profitable.

4 RESULTS

We applied the PreProPath algorithm to two test cases
involving a small- and a large-scale metabolic model
with 61 and 2,382 reactions, respectively. When com-
puting the minimum flux, maximum flux, and flux
ranges, we included cofactor and currency metabolites
in the stoichiometric balances. However, when apply-
ing the PreProPath algorithm on the graph represen-
tation of the metabolic model, we removed the nodes
corresponding to cofactors. This allows PreProPath to
identify conversion routes from s to d that carry the
carbon flux, as suggested by earlier work [24], [25].
With the removal of the cofactors, the two test cases
had 51 and 2267 reactions, respectively.

4.1 Ethanol Production in E. coli
The first test case examined the production of ethanol
from glucose in E. coli. As a first-generation bio-
fuel, ethanol garnered significant attention from the

metabolic engineering research community [26]. The
network model used in the case study was con-
structed to represent E. coli growing on a minimal
medium with glucose as the sole carbon and en-
ergy source [27]. The model comprised the follow-
ing metabolic pathways: glycolysis, pentose phos-
phate pathway, TCA cycle, anapleurotic reactions,
redox-associated reactions, oxidative phosphoryla-
tion/maintenance reactions, membrane transport re-
actions, and biomass synthesis. This model was used
to calculate the metabolic flux distributions in E. coli at
several steady states (Appendix A). For each reaction
in the model, a lower and upper bound was calculated
by minimizing and maximizing the flux subject to
stoichiometric and measurement constraints. Experi-
mental data for glucose uptake and growth rates were
taken from published studies involving chemostat
cultures [28]. The growth rates corresponded to the
following approximate doubling times: 200, 100, 80,
60, 50, 40 and 30 min. Overall, the relative magnitudes
of flux ranges with respect to glucose uptake were
similar across different growth rates. The reactions
with higher maximal flux values were found in gly-
colysis and pathways producing formate, ethanol and
acetate as shown in Fig. 4. At all growth rates, the
largest flux ranges were calculated for conversion of
phosphoenolpyruvic acid (PEP) to pyruvate (PYR),
followed by fructose-6-phosphate (F6P) to fructose-
1,6-biphosphate (F16P), and malate (MAL) to oxaloac-
etate (OAA).

The flux data corresponding to different growth
rates were at first separately analyzed. We used the
maximum reaction flux (upper bound) as the edge
weight to determine the flux-limiting reaction. Re-
actions with weights smaller than the flux-limiting
step were pruned to isolate the profitable network.
For every growth rate, the profitable network com-
prised glycolysis reactions (Fig. 5). As there were no
competing pathways in the profitable network, the
subsequent search for the predictable pathway led to
the trivial result.

We also investigated a pessimistic approach of us-
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Fig. 4. Flux distributions (mmol/gDW.hr) in E. coli
network for different growth rates. Flux distributions
are plotted for growth rates of (A) 200 and (B) 50
minutes. Reactions are arranged in ascending order of
flux lower bound.
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ACoA





Fig. 5. E. coli network for ethanol production. Upper
bounds of flux range are used as weights for the
identification of profitable network. Red lines highlight
pathways in the profitable network. The competing
pathways deleted by Trinh et al. [1] are marked with
X.

GLC
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ACA

ACoA





Fig. 6. E. coli network for ethanol production. Lower
bounds of flux range are used as weights for the
identification of profitable network. Red and blue lines
highlight competing pathways in the profitable network
for the production of ethanol from glucose. The red
pathway is more predictable when compared to blue.
The competing pathways deleted by Trinh et al. [1] are
marked with X.

ing the minimal reaction flux (lower bound) as the
edge weight to identify the profitable network. For
every growth rate, the resulting profitable network
comprised glycolysis and the pentose phosphate path-
ways (Fig. 6). The subsequent search for the pre-
dictable pathway based on flux ranges eliminated the
pentose phosphate pathway, which contained reac-
tions with larger flux ranges compared to glycolysis.

To determine if there was a predictably profitable
consensus pathway across different growth rates, the
above analysis was repeated using pooled data. For
each reaction, the lower and upper flux bounds were
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Fig. 7. Flux distributions (mmol/gDW.hr) of reactions in
TCA cycle of E. coli network. Reactions are arranged
in ascending order of flux upper bound.

set to the minimum of the lower bounds and maxi-
mum of the upper flux bounds respectively, irrespec-
tive of the growth rate. As was the case for each of the
different growth rates, glycolysis is more predictably
profitable compared to the pentose phosphate path-
way.

4.2 Succinate Production in E. coli
In the second test case, we analyzed succinate pro-
duction from glucose using a genome-scale model
of E. coli metabolism (iAF1260) [29]. Succinate is a
commercially valuable chemical used as a precursor
for numerous industrial products, including pharma-
ceuticals and biodegradable polymers [30].

The upper and lower bounds of the reaction fluxes
in the model were calculated by constraining a subset
of internal and external fluxes using previously re-
ported measurements for the MG1655 strain of E. coli
assuming an error range of ±5 percent on the mea-
sured fluxes [31]. The upper bounds of ethanol trans-
port reactions were reduced, similar to a previous
study [32]. Based on these flux ranges, the profitable
network comprised the reactions of glycolysis and
the TCA cycle. In this network, the flux ranges of
reactions in the reductive arm of the TCA cycle,
involving the conversion of oxaloacetate (OAA) to
malate, fumarate, and eventually to succinate, were
smaller than the flux ranges of the remaining reactions
in the TCA cycle (Fig. 7). Consequently, the most
predictably profitable synthesis route consisted of 14
reactions spanning the reactions of glycolysis and the
reductive arm of the TCA cycle (Fig. 8).

4.3 Increasing the Flux through the Profitable
Pathway
To evaluate the predictably profitable pathway iden-
tified by our algorithm as a target for succinate
overproduction, we investigated the impact of over-
expressing one or more enzymes in the pathway.
Similar to a previous study [33], we calculated the
smallest level of guaranteed succinate production
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Fig. 8. E. coli network for succinate production. Red
lines highlight pathways for the production of succinate
from glucose.

by solving a linear program whose objective is to
minimize the succinate flux. Over-expression of an
enzyme was modeled by raising the lower bound
of the corresponding reaction flux. Flux ranges were
computed using FVA. Glucose uptake was set to a
nominal value of 100 mmol/gDW.hr and allowed to
vary ±5 percent. All flux ranges computed by FVA
are provided in Appendix B. We perform two sets of
experiments where the lower bound of the biomass
flux was set to 1 percent and to 5 percent of the wild-
type (iAF1260) value (3 mmol/gDW.hr).

We first investigated the impact of over-expressing
a single enzyme, i.e. increasing the lower bound of
a reaction flux. An increase in the minimal succinate
flux was found for three enzymes in the profitable
pathway; these were enolase (ENO), fumarate reduc-
tase (FRD3), and phosphoenol pyruvate carboxylase
(PPC) (Table 1). The magnitude of the minimal suc-
cinate flux depended on the enzyme and varied with
the amount of increase in the lower bound (Fig. 9
and Fig. 10). However, the lower bound could not
be increased without limit. For all three enzymes, a
threshold was found beyond which the linear pro-
gram became infeasible. The widest range of feasi-
ble solutions was found for FRD3 (Table 1). Over-

expressing FRD3 also afforded the highest minimal
succinate flux. Near the upper limit of the lower
bound for FRD3, the minimal succinate flux reached
99 percent and 96 percent of the theoretical maximum
for 1 percent and 5 percent of the wild-type biomass
flux, respectively. Over-expressing PPC resulted in
the lowest minimal succinate flux. However, even
intervention yielded significant increases in succinate
flux, above 48 percent and 44 percent of the theoretical
maximum, when the lower bounds for the biomass
flux were set to 1 percent and 5 percent of the wild-
type flux, respectively.

We next investigated whether over-expressing an
enzyme, one at a time, outside of the profitable path-
way could also lead to an increase in the minimal
succinate flux. The only enzyme over-expressions able
to produce succinate at a level similar to that ob-
tained by over-expressing enzymes in the predictably
profitable pathway were oxidative phosphorylation
reactions acting as cellular transport reactions.

Finally, we characterized the impact of over-
expressing pairs of enzymes (Fig. 11 and Fig. 12).
The calculations were performed exhaustively, since
the predictably profitable pathway consisted of only
10 reactions, excluding exchange reactions. Approxi-
mately half of the 45 unique combinations (55 percent)
resulted in a non-zero minimal flux of succinate. The
best combinations (supporting a minimal succinate
flux exceeding 75 percent of the theoretical maximum)
involved at least one of the three enzymes identified
from the single over-expression analysis (ENO, FRD3,
and PPC). In addition, fumarase (FUM) was also iden-
tified as an attractive engineering target, specifically in
combination with FRD3 or PPC for 1 percent biomass
production. In these cases, the main contribution of
FUM was to enlarge the effective over-expression
range of the other enzyme. For example, when the
lower bound of FUM flux is placed within the range
of the wild type, only a narrow range is available
for PPC over-expression to achieve a higher minimal
succinate flux (exceeding 75 percent of the theoret-
ical maximum). In contrast, reducing FUMs lower
bound to below 20 mmol/gDW.hr widens the PPC
over-expression range four-fold (Fig. 11b). Similarly,
the lower bound of PPC flux when reduced below

TABLE 1
Flux Ranges of Enzymes Increases Minimum Succinate Yield. Units are mmol/gDW.hr.

Enzyme Wild-type
flux range

At least 1% biomass production At least 5% biomass production

Max.
succinate

yield

Flux range for at least x% of max.
theoretical yield of succinate

Max.
succinate

yield

Flux range for at least x% of max.
theoretical yield of succinate

x = 33 x = 50 x = 75 x = 33 x = 50 x = 75

ENO 172− 205.7 89 251− 260 254− 260 258− 260 85 229− 258 250− 258 252− 258

FRD3 0− 112.3 99 94− 210 124− 210 168− 210 96 96− 209 126− 209 117− 209

PPC 81.5− 88.2 48 335− 356 − − 44 327− 344 − −
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Fig. 9. Minimum guaranteed succinate flux for single intervention for at least 1% biomass production. Succinate
flux (mmol/gDW.hr) is plotted against lower bound of reaction flux (mmol/gDW.hr).

Fig. 10. Minimum guaranteed succinate flux for single intervention for at least 5% biomass production. Succinate
flux (mmol/gDW.hr) is plotted against lower bound of reaction flux (mmol/gDW.hr).

150 mmol/gDW.hr, widens the ENO over-expression
range five-fold (Fig. 11c). In all cases supporting a
minimal succinate flux greater than 75 percent of
the theoretical maximum, the increase in the minimal
succinate flux positively correlated with an increase
in the lower bound of ENO, FRD3 or PPC. In this
regard, the double over-expressions did not identify
any new enzymes for flux increase. Therefore, we
did not further investigate additional combinations
involving triple or quadruple over-expressions.

The engineering targets identified by our approach
varied with different biomass production rates due
to the different requirements for biomass precursors.
For example, FUM was not identified as a potential
enzyme for intervention when the lower bound for
biomass flux was set to 5 percent of the wild-type
flux. The over-expression ranges also depended on
the growth rates. For higher growth rate, the over-
expression level of the enzymes was lower compared
to lower growth rate, reflecting a lower yield of suc-
cinate for a faster growing cell. For example, the flux
range of PPC was found to be 335-356 mmol/gDW.hr
for 1 percent biomass production compared to 327-344

mmol/gDw.hr for 5 percent biomass production.

5 CONCLUSION AND DISCUSSION
We have developed an efficient computational
method to identify engineering targets for increased
production of compounds in biochemical networks.
The method is “uncertainty-aware” as it considers de-
grees of freedom in the model and multiple metabolic
states arising because of different uptake rates. The
algorithm is based on guided search and avoids ex-
haustive exploration of all pathways in the network.
The effectiveness of the method was demonstrated
by applying it to two test cases. In the first test
case, the algorithm identified pathways for the max-
imum production of target compounds across differ-
ent steady-state flux distributions reflecting different
growth rates. In the second test case, we characterized
the over-expression of enzymes along the succinate-
producing pathway in E. coli that was identified by
our algorithm as the predictable profitable path. An
important feature of the PreProPath algorithm is that
it can take into account different flux states, as deter-
mined by measured rates of metabolite exchange with
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Fig. 11. Contour plot of minimum guaranteed succinate yield for at least 1% biomass production. Minimum
succinate yield is plotted for lower bounds of reaction flux (mmol/gDW.hr) of the two intervened enzymes. The
operating range of reaction fluxes in wild-type characterized strain is also shown.

Fig. 12. Contour plot of minimum guaranteed succinate yield for at least 5% biomass production. Minimum
succinate yield is plotted for lower bounds of reaction flux (mmol/gDW.hr) of the two intervened enzymes. The
operating range of reaction fluxes in wild-type characterized strain is also shown.

the medium, when searching for pathways with par-
ticular attributes. In the first test case, PreProPath iden-
tified the same pathway, glycolysis, across different
growth rates, underscoring the singular importance
of this pathway in ethanol production.

PreProPath is effective in analyzing biochemical
pathways without direct enumeration of all possible
pathways. Our algorithm is an alternative to explicitly
enumerating all elementary pathways followed by
search for a pathway with a specific property (pre-
dictability and profitability, in this case). To increase
ethanol production in E. coli as in our first test case,
Trinh et al. identified and then analyzed over 15,000
EFMs to determine gene knockout targets [1]. To
narrow down the candidate pathways, EFMs that do
not contribute to ethanol production were eliminated.
The remaining ethanol-producing EFMs were then
grouped into six “families” based on the type of
sugar substrate. Using eight gene knockouts, path-
ways competing with ethanol producing pathways
were removed. Our identified predictably profitable

pathway is the same one identified by Trinh et al.
We have computed the number of EFMs using two
tools, gEFM [34] and EFMTool [16]. The runtime for
gEFM was smaller at 1,636 seconds. With network
compression, the runtime for EFMTool was smaller
at 54.68 seconds. The runtime for PreProPath, without
network compression, was less than one second. All
programs were executed on a 2.83GHz Intel Xeon
E5440 CPU with a 12MB cache.

In our case studies, we looked at bottleneck reac-
tions that refer to flux-limiting reactions. A reaction
can be “flux-limiting” due to various reasons such
as reaction kinetics or regulatory effects. Our method
simply identifies such a reaction within the context
of a specific network at a particular flux distribution.
We draw a distinction between flux-limiting and rate-
limiting. A flux-limiting reaction does not necessarily
correspond to a “rate-limiting” reaction, which was
believed to be the slowest step in a series of reactions,
and was often associated with the first committed
step of a pathway. Metabolic Control Analysis [33],
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applicable only in the context of small network pertur-
bations, shows that such flux-limiting reactions exist
if the first reaction step is completely insensitive to its
product, which is not typically the case.

The results of the case studies suggest that our
algorithm can efficiently guide the search for pathway
engineering targets. While the results are promising,
they also pointed to limitations of the present analy-
sis. First, the analysis does not distinguish between
degrees of freedom in a model arising from insuf-
ficient equality constraints and variances associated
with measurements. These two different sources of
uncertainty can both lead to flux variability, which
forms the basis of our algorithm. However, the rel-
ative magnitudes of these uncertainties directly in-
fluence the results. For example, the second case
study showed that it is possible to obtain a dif-
ferent predictably profitable pathway depending on
the metabolic state. Clearly, metabolic states can only
be distinguished meaningfully, if the uncertainties in
the measurements are sufficiently small. One way to
discriminate between the variances arising from the
two different sources of uncertainty is through sen-
sitivity analysis, for example based on Monte Carlo
simulations, which systematically assess the impact
of measurement errors. Second, the analysis assumed
that a reaction with a small value for its flux range
is more profitable to genetically boost than another
with a higher range value. Additionally, it is assumed
that the flux values are uniformly distributed be-
tween the minimum and maximum flux values. The
algorithm presented here can be adapted to utilize
edge weights that correspond to a different desired
objective. For example, if Monte Carlo sampling is
utilized and flux distributions are available, then
incorporating spreads in standard deviation of flux
distributions in edge weightings may be more infor-
mative about predictability than flux ranges. Third,
using FVA, the flux for each edge is maximized and
minimized independently of the flux state of other
edges constrained only by the stoichiometric balances
and the physicochemical upper and lower bounds
on the fluxes (e.g. reaction irreversibility). Clearly,
not all reactions can attain their maximum or min-
imum flux values simultaneously. Our profitability
and predictability analysis can be made more accurate
by computing tighter flux bounds attained through
additional constraints or utilizing a sampling based
approach. The additional constraints could be derived
from measurements on flux distributions at differ-
ent metabolic states, for example, through isotopic
labeling experiments. The sampling would respect
dependencies and ensure consistent metabolic state
throughout the network. The algorithm presented
here can be adapted to utilize edge weights that cor-
respond to a different desired objective. The Java im-
plementation of the algorithm is available via GitHub
at https://github.com/eullah01/PreProPath.

APPENDIX A
Flux data of E. coli for ethanol production.

APPENDIX B
Flux data of E. coli for succinate production.
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